
Rationale: Acute Radiation Syndrome (ARS) and long-term effects of radiation exposure such as cancer and 

metabolic diseases development are major risks for long duration and deep space missions. Current biodosimetry 

methods include invasive sampling and complex time-consuming molecular biology while having poor prognostic 

power. Space radiobiology research is complicated by experimental constraints and limited human subjects. 

Radiation exposure induces metabolic changes in various biological tissues. The skin with its microbiome is the first 
exposed layer to radiation and is easily accessible.  Objectives: To develop a non-invasive method for rapid 

diagnostic and routine monitoring of metabolic and microbiome changes on skin for both astronauts and civilians 

exposed to radiation. Method: Our approach combines integrated multi-omic analysis and Artificial 

Intelligence/Machine Learning (AI/ML) to predict radiation dose level and type as well as date of exposure through 

the screen of metabolomic and microbiome signatures on the skin. Our project’s research includes 1) an 
exploration phase in mice and bioengineered human skin equivalents exposed to low-dose radiation (<1Gy) and up 

to 4Gy, sampled (skin swabs) at multiple timepoints after exposure, and 2) a blinded test validation on mice skin 

swabs samples provided by the US government. Our preliminary results show that both unsupervised and 

supervised machine learning techniques can decipher dose and time since exposure from skin swabs samples. 
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Skin swab-based omics is a promising biodosimetry method to support human performance 

both on Earth and beyond while expanding our understanding of radiobiology. The next 

phase of our project will investigate low doses (< 1Gy) exposure signatures trackable on skin 

which will be translatable to space biology. Artificial skin experiments have never been 

conducted in space. Requiring few and simple handling procedures, bioengineered skin 

equivalents represent a valuable and bioethic tool for space biology research and support the 

future of humanity in the universe.
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ABSTRACT

Methods: Mouse and Human skin models
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Figure 1. Venn diagram of Metabolite set enrichment analysis performed on 

MetaboAnalyst 5.0 online software of compounds with a VIP score > 1 found 

in common at all exposure doses (1, 2, and 4 Gy) in Human skin equivalents 

and Mouse skin (partial least square differential analysis, PLS-DA). 

Figure 3. Venn 

diagram of 

spectral 

features with a 

VIP scored > 1 

at 1, 2, and 

4Gy) in A) 

Human skin 

equivalents and 

B) Mice skin.  

Figure 2.  Human skin equivalent A) Heatmap representation of average abundances of the top spectral features (ANOVA / 

P-value, method), B) Principal Component Analysis (PCA), and C) K-means clustering of Sham, 1 Gy, 2 Gy, and 4 Gy 

exposed groups.

In both mouse skin and human skin equivalents, compounds with PLS-DA 

VIP score > 1 are found exclusively at either 1 Gy, 2 Gy, or 4 Gy. These 

results suggest that skin metabolomic signatures depends on dose levels, 

and that particular metabolomic features can decipher between doses.

Figure 5. Taxonomic Data From 16S Sequencing. QIIME2 is used to analyze and predict taxonomic assignments 

of ASVs mouse skin swab. . 

Figure 6. Dose prediction confusion matrix showing predicted dose vs actual dose using a machine learned 

classifier  in A) skin mouse metabolome, and B) human skin equivalent metabolome. 

Metabolomic studies have never been run on irradiated 

bioengineered human skin colonized by human 

microbiome. This Venn diagram shows that bioengineered 

human skin equivalents and mouse skin share common 

biological pathways after irradiation. Our bioengineered 

human skin equivalent model recapitulates in vivo skin 

molecular responses to radiation.
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Figure 7. A) Actual time since irradiation event in days (x-axis) vs predicted time since irradiation (y-axis) for 180 

unique mouse swabs. Predictions were made using a machine-learned regressor on untargeted LC-MS data. B) 
Confusion matrix showing the actual time in days vs the time predicted by a machine-learned classifier in human 

skin equivalent metabolome. 
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Figure 4. Abundance levels 

of select candidate 

biomarkers in both human 

skin equivalents and mice 

skin for biomarker candidates 

(biologivally relevant) for 1 

Gy (left) and 4 Gy (right)

Microbiome profile differs between doses and could serve as direct input into predictive 

models through BIOMON (developed for DARPA and IARPA).

The classifier shows a high number of points along the diagonal, indicating a correct 

classification. In the human skin model, the classifier demonstrates a bias towards 

higher predicted doses due to an imbalance of training samples, which will likely be 

remedied by the introduction of more samples. 

The classifier demonstrates low amounts of confusion from the pre-

irradiated samples, and fairly low levels of confusion for the irradiated 

samples. This already promising predictive power will be increased by the 

introduction of further samples.
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Here we present the data observed at 1 Gy, 2 Gy, and 4 Gy in mice and human skin equivalents 

3 days after x-rays exposures. Both model results converge toward a general signature of 

radiation exposure on the skin, while specific metabolites decipher between the 3 doses.
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