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Objectives: Tert-butyl benzoquinone (TBBQ) is the oxidation product of tert-butyl hydroquinone (TBHQ), an anti-
microbial food additive with .40 years of safe use. TBBQ displays potent activity against Staphylococcus aureus
biofilms in vitro. Here, we report on studies to further explore the action of TBBQ on staphylococcal biofilms, and
provide a preliminary preclinical assessment of its potential for use as a topical treatment for staphylococcal
infections involving a biofilm component.

Methods: The antibacterial properties of TBBQ were assessed against staphylococci growing in planktonic culture
and as biofilms in the Calgary Biofilm Device. Established assays were employed to measure the effects of TBBQ
on biofilm structure and bacterial membranes, and to assess resistance potential. A living-skin equivalent was
used to evaluate the effects of TBBQ on human skin.

Results: TBBQ eradicated biofilms of S. aureus and other staphylococcal species at concentrations ≤64 mg/L. In
contrast to other redox-active agents exhibiting activity against biofilms, TBBQ did not cause substantial destruc-
turing of the biofilm matrix; instead, the antibiofilm activity of the compound was attributed to its ability to kill
slow- and non-growing cells via membrane perturbation. TBBQ acted synergistically with gentamicin, did not
damage a living-skin equivalent following topical application and exhibited low resistance potential.

Conclusions: The ability of TBBQ to eradicate biofilms appears to result from its ability to kill bacteria regardless of
growth state. Preliminary evaluation suggests that TBBQ represents a promising candidate for development as a
topical antibiofilm agent.

Introduction
Biofilms comprise structured communities of microorganisms in a
self-produced extracellular matrix, usually attached to an organic
or abiotic surface.1 For many bacteria, including a substantial pro-
portion of those that cause human disease, the biofilm represents
the usual mode of growth.2 Infections involving a substantial bio-
film component (e.g. chronic wounds) are notoriously difficult to
treat; not only does the physiological status of the bacteria inside
the biofilm render them refractory to killing by extant antibacterial
drugs, but the extracellular matrix acts to physically shield the
inhabitants from attack by the host’s immune system.3 One
approach to address the current difficulties we face in treating bio-
film infections is to discover new antibacterial agents that demon-
strate substantial killing and/or eradication of bacterial biofilms.4

Here, we present a detailed characterization of one such
candidate compound—tert-butyl benzoquinone (TBBQ). TBBQ is
the spontaneous oxidation product of tert-butyl hydroquinone
(TBHQ), a food preservative with over 40 years’ safe use,5 and repre-
sents the chemical species responsible for the antibacterial activity

previously ascribed to TBHQ.6 During a recent study to investigate
the antibacterial properties of TBBQ, we were intrigued to find that
this compound was able to eradicate preformed biofilms of the
laboratory strain Staphylococcus aureus SH1000.6 We have therefore
undertaken a more comprehensive investigation into the activity and
mode of action of TBBQ on staphylococcal biofilms and conducted a
preliminary assessment of its potential for use as a topical treatment
for staphylococcal infections involving a biofilm component.

Materials and methods

General aspects
A panel of coagulase-positive and -negative staphylococci (S. aureus
SH1000,7,8 S. aureus Mu50, S. aureus Oxford, S. aureus MRSA252,
S. aureus USA300 FPR3757, S. aureus UAMS-1, Staphylococcus epidermidis
RP62A, Staphylococcus hominis NR5871, Staphylococcus haemolyticus
NCTC 11042, Staphylococcus capitis NCTC 11045 and Staphylococcus lug-
dunensis 31440) was employed for evaluating the antibacterial activity of
TBBQ. Bacteria were cultured using Mueller–Hinton broth (MHB) and agar
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(Oxoid, Cambridge, UK), supplemented with calcium (50 mg/L, in the form
of CaCl2) for studies involving daptomycin. Chemicals were obtained from
Sigma–Aldrich (Poole, UK), unless otherwise stated.

Evaluation of antibacterial activity
MICs were determined according to CLSI guidelines,9 whilst time–kill
experiments were performed using exponential-phase, stationary-phase

and persister cells, as previously described.4 Minimum biofilm eradication
concentrations (MBECs) were determined using the Calgary Biofilm Device
(CBD).10 Synergistic interactions between TBBQ and established antibac-
terial drugs were examined against biofilms grown on the CBD using the
chequerboard method.11

Mode-of-action studies
The effect of TBBQ on bacterial membrane potential was evaluated using
the fluorescent dye 3,3′-dipropylthiadicarbocyanine iodide [DiSC3(5)]
(Invitrogen, Paisley, UK), whilst physical membrane integrity was assessed
by measuring leakage of potassium ions from staphylococci resuspended
in HEPES-glucose buffer (5 mM, pH 7.2).12 The impact of TBBQ on biofilm
structure was assessed by quantifying matrix material and adherent
cells by staining with SYPROwRuby and SYTOw9 stains (Invitrogen),
respectively.4

Preliminary evaluation of potential for use of TBBQ as a
topical antibiofilm agent
The effect of compounds on a human living-skin equivalent was assessed
using fully differentiated, 28-day-old LabSkinTM (Innovenn, York, UK),
as described previously.4 The potential for development of resistance
to TBBQ was investigated by plating saturated bacterial cultures onto
Mueller–Hinton agar containing TBBQ at 4×MIC13 and using the extended-
gradient MIC method of serial passage.14
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Figure 1. Continued.
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Figure 1. Antibacterial properties of TBBQ and comparator agents against
S. aureus SH1000. (a) Viability of staphylococci from exponential- and
stationary-phase cultures following exposure to TBBQ and comparator
compounds at 256 mg/L for 24 h. T0 shows bacterial cell density prior to the
addition of compounds. (b) Viability of persister cells (recovered after
challenge with either ampicillin or ciprofloxacin) following exposure to TBBQ
and comparator compounds at 10×MIC for 24 h. (c) Effect of TBBQ and
comparator agents at 4×MIC on bacterial membrane potential. (d) Effect of
compounds at 4×MIC on leakage of intracellular potassium. All datum points
represent means of at least three independent determinations, and error bars
show standard deviations. CTAB, cetyltrimethylammonium bromide; K+,
potassium ion; ndc, no-drug control.
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Results and discussion
We have previously demonstrated that TBBQ exhibits good antibac-
terial activity (MIC of 8 mg/L for the laboratory strain S. aureus
SH1000) and sterilizes preformed biofilms of this same strain at
8×MIC (MBEC of 64 mg/L).6 Here, we further evaluated the activity
of TBBQ against planktonic and biofilm cultures of S. aureus clinical
isolates (including MRSA and vancomycin-intermediate S. aureus
strains) and other staphylococci capable of causing human dis-
ease. TBBQ inhibited bacterial growth and eradicated biofilms of all
isolates (MIC 4–8 mg/L, MBEC 4–64 mg/L), with a potency equiva-
lent to, or better than, that displayed against S. aureus SH1000, and
at concentrations potentially achievable in skin via topical delivery.

Several redox-active compounds capable of eradicating
staphylococcal biofilms do so by destructuring the biofilm matrix.4

Although TBBQ is a redox-active agent, it did not cause a significant
reduction in the quantity of adhered matrix material or cells when
tested against SH1000 biofilms at 4×MBEC (256 mg/L) (data not
shown), a result indicating that this compound exerts its antibiofilm
activity through a different mechanism. The failure of established
antibacterial drugs to eradicate bacterial biofilms has been
attributed to the inability of these agents to effectively kill the
large proportion of slow- or non-growing (SONG) cells, including
persisters, present in biofilms.15 To assess whether the antibiofilm
activity of TBBQ might result from its ability to kill SONG bacteria, we
evaluated TBBQ-mediated killing of S. aureus SH1000 during expo-
nential growth, in stationary phase and in the persister state. At
4×MBEC (256 mg/L), TBBQ sterilized cultures (limit of detection of
10 cfu/mL) of both actively growing and non-growing (stationary
phase) bacteria, a property not shared by the comparator agent,
daptomycin (Figure 1a). Similarly, TBBQ was the only agent tested
that could sterilize a population of persister cells (Figure 1b) (limit of
detection of 1 cfu/mL).

A common feature of compounds capable of eradicating pre-
formed bacterial biofilms is that they act to perturb the bacterial
membrane.16,17 In our previous study on TBBQ, we showed using
a dye penetration assay that this compound caused a reduction
(�35%) in bacterial membrane integrity following 10 min of
exposure,6 suggesting that the antibacterial mode of action of
TBBQ does indeed involve membrane perturbation. To confirm
and further define the action of TBBQ on the bacterial membrane,
we challenged S. aureus SH1000 with TBBQ and monitored
the effect on membrane potential [using the fluorescent dye
DiSC3(5)] and on the physical integrity of the membrane (by quan-
tifying leakage of intracellular potassium ions) over time. TBBQ
caused more rapid dissipation of membrane potential than the
antibiotic daptomycin, yielding a similar profile to that seen for
the lantibiotic nisin (Figure 1c). TBBQ also caused physical damage
to the staphylococcal membrane; however, whilst the comparator
membrane-perturbing agents all achieved essentially complete
leakage of intracellular potassium from bacteria in ≤60 min, leak-
age of potassium from TBBQ-treated cells was more gradual and
remained incomplete after 180 min (Figure 1d). Thus, the action
of TBBQ on bacterial membranes can be distinguished from that
of other membrane-active antibacterial agents, in that near-
complete loss of membrane potential is observed well before sub-
stantial loss of membrane integrity becomes evident.

We examined whether TBBQ demonstrates improved activity
against staphylococcal biofilms when combined with established
antibacterial drugs. No synergy was observed (fractional inhibitory

concentration index of .0.5) with respect to biofilm eradication
when TBBQ was individually combined with the antibacterial drugs
ciprofloxacin, erythromycin, oxacillin and tetracycline. However, syn-
ergy was observed (fractional inhibitory concentration index of
≤0.28) when TBBQ was combined with gentamicin. Gentamicin is
used as a topical cream at 0.1% (1000 mg/L) for the treatment of
infected wounds18 and, at this concentration, is unable to eradicate
established staphylococcal biofilms in vitro (data not shown).
However, the combination of TBBQ (2 mg/L) with gentamicin
(0.1%) achieved eradication in vitro, suggesting that co-application
of these agents might prove effective for the topical treatment of
infections involving a biofilm component.
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Figure 2. TBBQ does not cause visible damage to a living-skin equivalent.
LabSkinTM was exposed to compounds for 24 h, and sections were
subjected to haematoxylin and eosin staining. (a) Untreated control. (b)
SDS (5% w/v). (c) TBBQ at 10×MIC. This figure appears in colour in the
online version of JAC and in black and white in the print version of JAC.
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For a compound to be developed as a topical antibiofilm agent,
it should not cause damage or significant irritation to human skin.
In vitro, three-dimensional skin models (‘living-skin equivalents’),
such as LabSkinTM, represent an established means of evaluating
the acute dermal toxicity of chemical compounds.19 Following
exposure of LabSkinTM to TBBQ at 10×MIC (80 mg/L) for 24 h,
there was no increase in the release of the inflammatory cytokine
IL-1a (data not shown). Furthermore, haematoxylin and eosin
staining of tissue sections showed no visible detrimental effects fol-
lowing exposure of LabSkinTM to TBBQ (Figure 2c). Therefore, TBBQ
does not physically damage or irritate fully differentiated human
skin at concentrations above those required to eradicate staphylo-
coccal biofilms. By contrast, exposure of LabSkinTM to the irritant
SDS induced a 30-fold increase in release of IL-1a and was severely
damaging to the skin structure, causing shedding of the stratum
corneum and epidermis and injury to the dermis (Figure 2b).

Bacteria exposed to topical antibacterial agents may encounter
high compound concentrations and thereby experience a strong
selection pressure favouring the rapid development of resistance.20

Consequently, it is desirable for a candidate topical antibiofilm
agent to exhibit low resistance potential. To evaluate the resistance
potential of TBBQ, saturated cultures of S. aureus SH1000 were pla-
ted onto agar containing the compound at 4×MIC; no resistant
mutants were recovered (limit of detection, 5.0×1029). We subse-
quently attempted to select TBBQ resistant mutants by extended
serial passage in the presence of the compound. After 40 passages,
a strain of SH1000 exhibiting a 4-fold increase in TBBQ MIC was
recovered. By comparison, SH1000 subjected to 40 passages in
the presence of daptomycin, an antibacterial drug usually consid-
ered to exhibit low resistance potential, resulted in a strain exhibit-
ing a 16-fold increase in daptomycin MIC. Thus, TBBQ does not
readily select substantial levels of resistance.

Conclusions

The ability of TBBQ to eradicate biofilms appears to result from its
membrane-perturbing activity, which allows it to kill bacteria regard-
less of growth state. TBBQ exhibits potent antibiofilm activity, an
absence of detectable toxic effects on human skin and low resistance
potential. This agent therefore represents a promising candidate for
topical treatment, alone or in combination with gentamicin, of
staphylococcal skin infections involving a biofilm component.
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